Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-a+b)(b-a)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-ab+a^2+b^2-ab \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}a^2-2ab+b^2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-a+b}\right) $ by each term in $ \left( b-a\right) $. $$ \left( \color{blue}{-a+b}\right) \cdot \left( b-a\right) = -ab+a^2+b^2-ab $$ |
| ② | Combine like terms: $$ \color{blue}{-ab} +a^2+b^2 \color{blue}{-ab} = a^2 \color{blue}{-2ab} +b^2 $$ |