Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-5x+3)(2x^2+2x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-10x^3-10x^2+25x+6x^2+6x-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-10x^3-4x^2+31x-15\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-5x+3}\right) $ by each term in $ \left( 2x^2+2x-5\right) $. $$ \left( \color{blue}{-5x+3}\right) \cdot \left( 2x^2+2x-5\right) = -10x^3-10x^2+25x+6x^2+6x-15 $$ |
| ② | Combine like terms: $$ -10x^3 \color{blue}{-10x^2} + \color{red}{25x} + \color{blue}{6x^2} + \color{red}{6x} -15 = -10x^3 \color{blue}{-4x^2} + \color{red}{31x} -15 $$ |