Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-4x-3)(3x\cdot2-x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(-4x-3)(6x-x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(-4x-3)(5x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-20x^2+4x-15x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-20x^2-11x+3\end{aligned} $$ | |
| ① | $$ 3 x \cdot 2 = 6 x $$ |
| ② | Combine like terms: $$ \color{blue}{6x} \color{blue}{-x} -1 = \color{blue}{5x} -1 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{-4x-3}\right) $ by each term in $ \left( 5x-1\right) $. $$ \left( \color{blue}{-4x-3}\right) \cdot \left( 5x-1\right) = -20x^2+4x-15x+3 $$ |
| ④ | Combine like terms: $$ -20x^2+ \color{blue}{4x} \color{blue}{-15x} +3 = -20x^2 \color{blue}{-11x} +3 $$ |