Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-4r-7)\cdot(2-8r)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-8r+32r^2-14+56r \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}32r^2+48r-14\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-4r-7}\right) $ by each term in $ \left( 2-8r\right) $. $$ \left( \color{blue}{-4r-7}\right) \cdot \left( 2-8r\right) = -8r+32r^2-14+56r $$ |
| ② | Combine like terms: $$ \color{blue}{-8r} +32r^2-14+ \color{blue}{56r} = 32r^2+ \color{blue}{48r} -14 $$ |