Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-3x+5)(x\cdot2+7x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(-3x+5)(9x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-27x^2-15x+45x+25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-27x^2+30x+25\end{aligned} $$ | |
| ① | Combine like terms: $$ \color{blue}{2x} + \color{blue}{7x} +5 = \color{blue}{9x} +5 $$ |
| ② | Multiply each term of $ \left( \color{blue}{-3x+5}\right) $ by each term in $ \left( 9x+5\right) $. $$ \left( \color{blue}{-3x+5}\right) \cdot \left( 9x+5\right) = -27x^2-15x+45x+25 $$ |
| ③ | Combine like terms: $$ -27x^2 \color{blue}{-15x} + \color{blue}{45x} +25 = -27x^2+ \color{blue}{30x} +25 $$ |