| $$ \begin{aligned}(-2+h)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}h^3-6h^2+12h-8\end{aligned} $$ | |
| ① | Find $ \left(-2+h\right)^3 $ in two steps. S1: Swap two terms inside bracket S2: apply formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = h $ and $ B = 2 $. $$ \left(-2+h\right)^3 \xlongequal{ S1 } \left(h-2\right)^3 = h^3-3 \cdot h^2 \cdot 2 + 3 \cdot h \cdot 2^2-2^3 = h^3-6h^2+12h-8 $$ |