Tap the blue circles to see an explanation.
| $$ \begin{aligned}-12x^3y+xy^4+10x^2y^3+10x^3y-10x^2y^2-(-3x^3y-5x^2y^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}10x^2y^3+xy^4-2x^3y-10x^2y^2-(-3x^3y-5x^2y^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}10x^2y^3+xy^4-2x^3y-10x^2y^2+3x^3y+5x^2y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}10x^2y^3+xy^4+x^3y-5x^2y^2\end{aligned} $$ | |
| ① | Combine like terms: $$ \color{blue}{-12x^3y} +xy^4+10x^2y^3+ \color{blue}{10x^3y} -10x^2y^2 = 10x^2y^3+xy^4 \color{blue}{-2x^3y} -10x^2y^2 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( -3x^3y-5x^2y^2 \right) = 3x^3y+5x^2y^2 $$ |
| ③ | Combine like terms: $$ 10x^2y^3+xy^4 \color{blue}{-2x^3y} \color{red}{-10x^2y^2} + \color{blue}{3x^3y} + \color{red}{5x^2y^2} = 10x^2y^3+xy^4+ \color{blue}{x^3y} \color{red}{-5x^2y^2} $$ |