Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-0.001496x^3-0.03319x^2+2.3272x-17.6659)^2& \xlongequal{ }(-0x^3-0x^2+2x-17.6659)^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2-68x+289\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{0x^30x^2+2x-17}\right) $ by each term in $ \left( 0x^30x^2+2x-17\right) $. $$ \left( \color{blue}{0x^30x^2+2x-17}\right) \cdot \left( 0x^30x^2+2x-17\right) = \\ = 0x^6 \cancel{0x^5} \cancel{0x^4} \cancel{0x^3} \cancel{0x^5} \cancel{0x^4} \cancel{0x^3} \cancel{0x^2} \cancel{0x^4} \cancel{0x^3}+4x^2-34x \cancel{0x^3} \cancel{0x^2}-34x+289 $$ |
| ② | Combine like terms: $$ 0x^6 \, \color{blue}{ \cancel{0x^5}} \, \, \color{green}{ \cancel{0x^4}} \, \, \color{blue}{ \cancel{0x^3}} \, \, \color{blue}{ \cancel{0x^5}} \, \, \color{green}{ \cancel{0x^4}} \, \, \color{blue}{ \cancel{0x^3}} \, \, \color{green}{ \cancel{0x^2}} \, \, \color{green}{ \cancel{0x^4}} \, \, \color{blue}{ \cancel{0x^3}} \,+ \color{green}{4x^2} \color{orange}{-34x} \, \color{blue}{ \cancel{0x^3}} \, \, \color{green}{ \cancel{0x^2}} \, \color{orange}{-34x} +289 = \color{green}{4x^2} \color{orange}{-68x} +289 $$ |