Tap the blue circles to see an explanation.
| $$ \begin{aligned}-4(x-3)^3+1& \xlongequal{ }-4(x^3-9x^2+27x-27)+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(4x^3-36x^2+108x-108)+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4x^3+36x^2-108x+108+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-4x^3+36x^2-108x+109\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{4} $ by $ \left( x^3-9x^2+27x-27\right) $ $$ \color{blue}{4} \cdot \left( x^3-9x^2+27x-27\right) = 4x^3-36x^2+108x-108 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(4x^3-36x^2+108x-108 \right) = -4x^3+36x^2-108x+108 $$ |
| ③ | Combine like terms: $$ -4x^3+36x^2-108x+ \color{blue}{108} + \color{blue}{1} = -4x^3+36x^2-108x+ \color{blue}{109} $$ |