Tap the blue circles to see an explanation.
| $$ \begin{aligned}-3(x+3)^3& \xlongequal{ }-3(x^3+9x^2+27x+27) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(3x^3+27x^2+81x+81) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3x^3-27x^2-81x-81\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( x^3+9x^2+27x+27\right) $ $$ \color{blue}{3} \cdot \left( x^3+9x^2+27x+27\right) = 3x^3+27x^2+81x+81 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(3x^3+27x^2+81x+81 \right) = -3x^3-27x^2-81x-81 $$ |