Tap the blue circles to see an explanation.
| $$ \begin{aligned}x+\frac{3}{2}+\frac{2x-3}{2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2x+3}{2}+\frac{2x-3}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4x}{2}\end{aligned} $$ | |
| ① | Add $x$ and $ \dfrac{3}{2} $ to get $ \dfrac{ \color{purple}{ 2x+3 } }{ 2 }$. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{2x+3}{2} $ and $ \dfrac{2x-3}{2} $ to get $ \dfrac{4x}{2} $. To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{2x+3}{2} + \frac{2x-3}{2} & = \frac{2x+3}{\color{blue}{2}} + \frac{2x-3}{\color{blue}{2}} =\frac{ 2x+3 + \left( 2x-3 \right) }{ \color{blue}{ 2 }} = \\[1ex] &= \frac{4x}{2} \end{aligned} $$ |