Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+2x^2-x^3-x^4)(x+x^3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-x^7-x^6+x^5+2x^3+x^2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+2x^2-x^3-x^4}\right) $ by each term in $ \left( x+x^3\right) $. $$ \left( \color{blue}{x+2x^2-x^3-x^4}\right) \cdot \left( x+x^3\right) = \\ = x^2+ \cancel{x^4}+2x^3+2x^5 -\cancel{x^4}-x^6-x^5-x^7 $$ |
| ② | Combine like terms: $$ x^2+ \, \color{blue}{ \cancel{x^4}} \,+2x^3+ \color{green}{2x^5} \, \color{blue}{ -\cancel{x^4}} \,-x^6 \color{green}{-x^5} -x^7 = -x^7-x^6+ \color{green}{x^5} +2x^3+x^2 $$ |