| $$ \begin{aligned}\frac{(x+1)(x^6-1)}{x^2+1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x^7-x+x^6-1}{x^2+1}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+1}\right) $ by each term in $ \left( x^6-1\right) $. $$ \left( \color{blue}{x+1}\right) \cdot \left( x^6-1\right) = x^7-x+x^6-1 $$ |