Tap the blue circles to see an explanation.
| $$ \begin{aligned}(\frac{w}{2}(\frac{2}{w}-2)-l)(\frac{w^2}{4}+\frac{w}{2}(\frac{2}{w}-2)-l)-\frac{w^2}{4}(\frac{2}{w}-2)\frac{w}{2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(\frac{w}{2}\frac{-2w+2}{w}-l)(\frac{w^2}{4}+\frac{w}{2}\frac{-2w+2}{w}-l)-\frac{w^2}{4}\frac{-2w+2}{w}\frac{w}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}(\frac{-2w+2}{2}-l)(\frac{w^2}{4}+\frac{-2w+2}{2}-l)-\frac{-2w^3+2w^2}{4w}\frac{w}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{-2l-2w+2}{2}(\frac{w^2-4w+4}{4}-l)-\frac{-2w^4+2w^3}{8w} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} } }}}\frac{-2l-2w+2}{2}\frac{w^2-4l-4w+4}{4}-\frac{-2w^4+2w^3}{8w} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle13}{\textcircled {13}} \htmlClass{explanationCircle explanationCircle14}{\textcircled {14}} } }}}\frac{-2lw^2-2w^3+8l^2+16lw+10w^2-16l-16w+8}{8}-\frac{-2w^4+2w^3}{8w} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle15}{\textcircled {15}} } }}}\frac{-16lw^3+64l^2w+128lw^2+64w^3-128lw-128w^2+64w}{64w}\end{aligned} $$ | |
| ① | Subtract $2$ from $ \dfrac{2}{w} $ to get $ \dfrac{ \color{purple}{ -2w+2 } }{ w }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $2$ from $ \dfrac{2}{w} $ to get $ \dfrac{ \color{purple}{ -2w+2 } }{ w }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $2$ from $ \dfrac{2}{w} $ to get $ \dfrac{ \color{purple}{ -2w+2 } }{ w }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Multiply $ \dfrac{w}{2} $ by $ \dfrac{-2w+2}{w} $ to get $ \dfrac{ -2w+2 }{ 2 } $. Step 1: Cancel $ \color{blue}{ w } $ in first and second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{w}{2} \cdot \frac{-2w+2}{w} & \xlongequal{\text{Step 1}} \frac{\color{blue}{1}}{2} \cdot \frac{-2w+2}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( -2w+2 \right) }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ -2w+2 }{ 2 } \end{aligned} $$ |
| ⑤ | Multiply $ \dfrac{w}{2} $ by $ \dfrac{-2w+2}{w} $ to get $ \dfrac{ -2w+2 }{ 2 } $. Step 1: Cancel $ \color{blue}{ w } $ in first and second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{w}{2} \cdot \frac{-2w+2}{w} & \xlongequal{\text{Step 1}} \frac{\color{blue}{1}}{2} \cdot \frac{-2w+2}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( -2w+2 \right) }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ -2w+2 }{ 2 } \end{aligned} $$ |
| ⑥ | Multiply $ \dfrac{w^2}{4} $ by $ \dfrac{-2w+2}{w} $ to get $ \dfrac{ -2w^3+2w^2 }{ 4w } $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{w^2}{4} \cdot \frac{-2w+2}{w} & \xlongequal{\text{Step 1}} \frac{ w^2 \cdot \left( -2w+2 \right) }{ 4 \cdot w } \xlongequal{\text{Step 2}} \frac{ -2w^3+2w^2 }{ 4w } \end{aligned} $$ |
| ⑦ | Subtract $l$ from $ \dfrac{-2w+2}{2} $ to get $ \dfrac{ \color{purple}{ -2l-2w+2 } }{ 2 }$. Step 1: Write $ l $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑧ | Add $ \dfrac{w^2}{4} $ and $ \dfrac{-2w+2}{2} $ to get $ \dfrac{ \color{purple}{ w^2-4w+4 } }{ 4 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑨ | Multiply $ \dfrac{-2w^3+2w^2}{4w} $ by $ \dfrac{w}{2} $ to get $ \dfrac{ -2w^4+2w^3 }{ 8w } $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{-2w^3+2w^2}{4w} \cdot \frac{w}{2} & \xlongequal{\text{Step 1}} \frac{ \left( -2w^3+2w^2 \right) \cdot w }{ 4w \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ -2w^4+2w^3 }{ 8w } \end{aligned} $$ |
| ⑩ | Subtract $l$ from $ \dfrac{-2w+2}{2} $ to get $ \dfrac{ \color{purple}{ -2l-2w+2 } }{ 2 }$. Step 1: Write $ l $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑪ | Subtract $l$ from $ \dfrac{w^2-4w+4}{4} $ to get $ \dfrac{ \color{purple}{ w^2-4l-4w+4 } }{ 4 }$. Step 1: Write $ l $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑫ | Multiply $ \dfrac{-2w^3+2w^2}{4w} $ by $ \dfrac{w}{2} $ to get $ \dfrac{ -2w^4+2w^3 }{ 8w } $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{-2w^3+2w^2}{4w} \cdot \frac{w}{2} & \xlongequal{\text{Step 1}} \frac{ \left( -2w^3+2w^2 \right) \cdot w }{ 4w \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ -2w^4+2w^3 }{ 8w } \end{aligned} $$ |
| ⑬ | Multiply $ \dfrac{-2l-2w+2}{2} $ by $ \dfrac{w^2-4l-4w+4}{4} $ to get $ \dfrac{-2lw^2-2w^3+8l^2+16lw+10w^2-16l-16w+8}{8} $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{-2l-2w+2}{2} \cdot \frac{w^2-4l-4w+4}{4} & \xlongequal{\text{Step 1}} \frac{ \left( -2l-2w+2 \right) \cdot \left( w^2-4l-4w+4 \right) }{ 2 \cdot 4 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ -2lw^2+8l^2+8lw-8l-2w^3+8lw+8w^2-8w+2w^2-8l-8w+8 }{ 8 } = \frac{-2lw^2-2w^3+8l^2+16lw+10w^2-16l-16w+8}{8} \end{aligned} $$ |
| ⑭ | Multiply $ \dfrac{-2w^3+2w^2}{4w} $ by $ \dfrac{w}{2} $ to get $ \dfrac{ -2w^4+2w^3 }{ 8w } $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{-2w^3+2w^2}{4w} \cdot \frac{w}{2} & \xlongequal{\text{Step 1}} \frac{ \left( -2w^3+2w^2 \right) \cdot w }{ 4w \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ -2w^4+2w^3 }{ 8w } \end{aligned} $$ |
| ⑮ | Subtract $ \dfrac{-2w^4+2w^3}{8w} $ from $ \dfrac{-2lw^2-2w^3+8l^2+16lw+10w^2-16l-16w+8}{8} $ to get $ \dfrac{ \color{purple}{ -16lw^3+64l^2w+128lw^2+64w^3-128lw-128w^2+64w } }{ 64w }$. To subtract raitonal expressions, both fractions must have the same denominator. |