Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{r}{r-4}-\frac{r+8}{r^2-5r+4}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{r^2-2r-8}{r^2-5r+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{r+2}{r-1}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{r+8}{r^2-5r+4} $ from $ \dfrac{r}{r-4} $ to get $ \dfrac{ \color{purple}{ r^2-2r-8 } }{ r^2-5r+4 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Simplify $ \dfrac{r^2-2r-8}{r^2-5r+4} $ to $ \dfrac{r+2}{r-1} $. Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{r-4}$. $$ \begin{aligned} \frac{r^2-2r-8}{r^2-5r+4} & =\frac{ \left( r+2 \right) \cdot \color{blue}{ \left( r-4 \right) }}{ \left( r-1 \right) \cdot \color{blue}{ \left( r-4 \right) }} = \\[1ex] &= \frac{r+2}{r-1} \end{aligned} $$ |