Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{(k+1)(2k+1)(2k+3)}{3}+(2k+3)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{(k+1)(2k+1)(2k+3)}{3}+4k^2+12k+9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{(2k^2+k+2k+1)(2k+3)}{3}+4k^2+12k+9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{(2k^2+3k+1)(2k+3)}{3}+4k^2+12k+9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{4k^3+6k^2+6k^2+9k+2k+3}{3}+4k^2+12k+9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{4k^3+12k^2+11k+3}{3}+4k^2+12k+9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{4k^3+24k^2+47k+30}{3}\end{aligned} $$ | |
| ① | Find $ \left(2k+3\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2k } $ and $ B = \color{red}{ 3 }$. $$ \begin{aligned}\left(2k+3\right)^2 = \color{blue}{\left( 2k \right)^2} +2 \cdot 2k \cdot 3 + \color{red}{3^2} = 4k^2+12k+9\end{aligned} $$ |
| ② | Multiply each term of $ \left( \color{blue}{k+1}\right) $ by each term in $ \left( 2k+1\right) $. $$ \left( \color{blue}{k+1}\right) \cdot \left( 2k+1\right) = 2k^2+k+2k+1 $$ |
| ③ | Combine like terms: $$ 2k^2+ \color{blue}{k} + \color{blue}{2k} +1 = 2k^2+ \color{blue}{3k} +1 $$ |
| ④ | Multiply each term of $ \left( \color{blue}{2k^2+3k+1}\right) $ by each term in $ \left( 2k+3\right) $. $$ \left( \color{blue}{2k^2+3k+1}\right) \cdot \left( 2k+3\right) = 4k^3+6k^2+6k^2+9k+2k+3 $$ |
| ⑤ | Combine like terms: $$ 4k^3+ \color{blue}{6k^2} + \color{blue}{6k^2} + \color{red}{9k} + \color{red}{2k} +3 = 4k^3+ \color{blue}{12k^2} + \color{red}{11k} +3 $$ |
| ⑥ | Add $ \dfrac{4k^3+12k^2+11k+3}{3} $ and $ 4k^2+12k+9 $ to get $ \dfrac{ \color{purple}{ 4k^3+24k^2+47k+30 } }{ 3 }$. Step 1: Write $ 4k^2+12k+9 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |