Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{7r(x+h)+6h-6-7rx}{h}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7(1rx+hr)+6h-6-7rx}{h} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{7rx+7hr+6h-6-7rx}{h} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{7hr+6h-6}{h}\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{r} $ by $ \left( x+h\right) $ $$ \color{blue}{r} \cdot \left( x+h\right) = rx+hr $$ |
| ② | Multiply $ \color{blue}{7} $ by $ \left( rx+hr\right) $ $$ \color{blue}{7} \cdot \left( rx+hr\right) = 7rx+7hr $$ |
| ③ | Simplify numerator $$ \, \color{blue}{ \cancel{7rx}} \,+7hr+6h-6 \, \color{blue}{ -\cancel{7rx}} \, = 7hr+6h-6 $$ |