Tap the blue circles to see an explanation.
| $$ \begin{aligned}(6v+2)(4v+2w-6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}24v^2+12vw-36v+8v+4w-12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}24v^2+12vw-28v+4w-12\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{6v+2}\right) $ by each term in $ \left( 4v+2w-6\right) $. $$ \left( \color{blue}{6v+2}\right) \cdot \left( 4v+2w-6\right) = 24v^2+12vw-36v+8v+4w-12 $$ |
| ② | Combine like terms: $$ 24v^2+12vw \color{blue}{-36v} + \color{blue}{8v} +4w-12 = 24v^2+12vw \color{blue}{-28v} +4w-12 $$ |