Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{6+\frac{3}{4x}}{\frac{4}{8x}+\frac{1}{10x^2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{24x+3}{4x}}{\frac{40x^2+8x}{80x^3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{1920x^4+240x^3}{160x^3+32x^2} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{120x^2+15x}{10x+2}\end{aligned} $$ | |
| ① | Add $6$ and $ \dfrac{3}{4x} $ to get $ \dfrac{ \color{purple}{ 24x+3 } }{ 4x }$. Step 1: Write $ 6 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{4}{8x} $ and $ \dfrac{1}{10x^2} $ to get $ \dfrac{ \color{purple}{ 40x^2+8x } }{ 80x^3 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Divide $ \dfrac{24x+3}{4x} $ by $ \dfrac{40x^2+8x}{80x^3} $ to get $ \dfrac{ 1920x^4+240x^3 }{ 160x^3+32x^2 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{24x+3}{4x} }{ \frac{\color{blue}{40x^2+8x}}{\color{blue}{80x^3}} } & \xlongequal{\text{Step 1}} \frac{24x+3}{4x} \cdot \frac{\color{blue}{80x^3}}{\color{blue}{40x^2+8x}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( 24x+3 \right) \cdot 80x^3 }{ 4x \cdot \left( 40x^2+8x \right) } \xlongequal{\text{Step 3}} \frac{ 1920x^4+240x^3 }{ 160x^3+32x^2 } \end{aligned} $$ |