Tap the blue circles to see an explanation.
| $$ \begin{aligned}((6-4x)(5x^2-32)-2(x-1)(xx+3))(2x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}((6-4x)(5x^2-32)-2(x-1)(x^2+3))(2x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(30x^2-192-20x^3+128x-(2x-2)(x^2+3))(2x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(30x^2-192-20x^3+128x-(2x^3+6x-2x^2-6))(2x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(30x^2-192-20x^3+128x-2x^3-6x+2x^2+6)(2x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}(-22x^3+32x^2+122x-186)(2x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}-44x^4+130x^3+148x^2-738x+558\end{aligned} $$ | |
| ① | $$ x x = x^{1 + 1} = x^2 $$ |
| ② | Multiply each term of $ \left( \color{blue}{6-4x}\right) $ by each term in $ \left( 5x^2-32\right) $. $$ \left( \color{blue}{6-4x}\right) \cdot \left( 5x^2-32\right) = 30x^2-192-20x^3+128x $$Multiply $ \color{blue}{2} $ by $ \left( x-1\right) $ $$ \color{blue}{2} \cdot \left( x-1\right) = 2x-2 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{2x-2}\right) $ by each term in $ \left( x^2+3\right) $. $$ \left( \color{blue}{2x-2}\right) \cdot \left( x^2+3\right) = 2x^3+6x-2x^2-6 $$ |
| ④ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x^3+6x-2x^2-6 \right) = -2x^3-6x+2x^2+6 $$ |
| ⑤ | Combine like terms: $$ \color{blue}{30x^2} \color{red}{-192} \color{green}{-20x^3} + \color{orange}{128x} \color{green}{-2x^3} \color{orange}{-6x} + \color{blue}{2x^2} + \color{red}{6} = \\ = \color{green}{-22x^3} + \color{blue}{32x^2} + \color{orange}{122x} \color{red}{-186} $$ |
| ⑥ | Multiply each term of $ \left( \color{blue}{-22x^3+32x^2+122x-186}\right) $ by each term in $ \left( 2x-3\right) $. $$ \left( \color{blue}{-22x^3+32x^2+122x-186}\right) \cdot \left( 2x-3\right) = -44x^4+66x^3+64x^3-96x^2+244x^2-366x-372x+558 $$ |
| ⑦ | Combine like terms: $$ -44x^4+ \color{blue}{66x^3} + \color{blue}{64x^3} \color{red}{-96x^2} + \color{red}{244x^2} \color{green}{-366x} \color{green}{-372x} +558 = \\ = -44x^4+ \color{blue}{130x^3} + \color{red}{148x^2} \color{green}{-738x} +558 $$ |