| $$ \begin{aligned}\frac{2x+14}{x+1}\frac{x^2-1}{6x^2+42x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x-1}{3x}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{2x+14}{x+1} $ by $ \dfrac{x^2-1}{6x^2+42x} $ to get $ \dfrac{ x-1 }{ 3x } $. Step 1: Factor numerators and denominators. Step 2: Cancel common factors. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{2x+14}{x+1} \cdot \frac{x^2-1}{6x^2+42x} & \xlongequal{\text{Step 1}} \frac{ 1 \cdot \color{blue}{ \left( 2x+14 \right) } }{ 1 \cdot \color{red}{ \left( x+1 \right) } } \cdot \frac{ \left( x-1 \right) \cdot \color{red}{ \left( x+1 \right) } }{ 3x \cdot \color{blue}{ \left( 2x+14 \right) } } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 1 }{ 1 } \cdot \frac{ x-1 }{ 3x } \xlongequal{\text{Step 3}} \frac{ 1 \cdot \left( x-1 \right) }{ 1 \cdot 3x } \xlongequal{\text{Step 4}} \frac{ x-1 }{ 3x } \end{aligned} $$ |