| $$ \begin{aligned}(-4a-(-2b))^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16a^2-16ab+4b^2\end{aligned} $$ | |
| ① | Find $ \left(-4a+2b\right)^2 $ in two steps. S1: Change all signs inside bracket. S2: Apply formula $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 4a } $ and $ B = \color{red}{ 2b }$. $$ \begin{aligned}\left(-4a+2b\right)^2& \xlongequal{ S1 } \left(4a-2b\right)^2 \xlongequal{ S2 } \color{blue}{\left( 4a \right)^2} -2 \cdot 4a \cdot 2b + \color{red}{\left( 2b \right)^2} = \\[1 em] & = 16a^2-16ab+4b^2\end{aligned} $$ |