Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{6+\frac{3}{4x}}{\frac{4}{5x}+\frac{1}{10x^2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{24x+3}{4x}}{\frac{40x^2+5x}{50x^3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{150x^3}{20x^2}\end{aligned} $$ | |
| ① | Add $6$ and $ \dfrac{3}{4x} $ to get $ \dfrac{ \color{purple}{ 24x+3 } }{ 4x }$. Step 1: Write $ 6 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{4}{5x} $ and $ \dfrac{1}{10x^2} $ to get $ \dfrac{ \color{purple}{ 40x^2+5x } }{ 50x^3 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Divide $ \dfrac{24x+3}{4x} $ by $ \dfrac{40x^2+5x}{50x^3} $ to get $ \dfrac{ 150x^3 }{ 20x^2 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{24x+3}{4x} }{ \frac{\color{blue}{40x^2+5x}}{\color{blue}{50x^3}} } & \xlongequal{\text{Step 1}} \frac{24x+3}{4x} \cdot \frac{\color{blue}{50x^3}}{\color{blue}{40x^2+5x}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 3 \cdot \color{blue}{ \left( 8x+1 \right) } }{ 4x } \cdot \frac{ 50x^3 }{ 5x \cdot \color{blue}{ \left( 8x+1 \right) } } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3 }{ 4x } \cdot \frac{ 50x^3 }{ 5x } \xlongequal{\text{Step 4}} \frac{ 3 \cdot 50x^3 }{ 4x \cdot 5x } \xlongequal{\text{Step 5}} \frac{ 150x^3 }{ 20x^2 } \end{aligned} $$ |