Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{(2kn-(k-1))(2kn-(k-1)+1)}{2}-(2k+1)n\frac{(2k+1-2)n-(2k+1-4)}{2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{(2kn-(k-1))(2kn-(k-1)+1)}{2}-(2kn+n)\frac{(2k+1-2)n-(2k+1-4)}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{(2kn-(k-1))(2kn-k+1+1)}{2}-(2kn+n)\frac{2kn+n-2n-(2k-3)}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{(2kn-k+1)(2kn-k+2)}{2}-(2kn+n)\frac{2kn-n-(2k-3)}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{4k^2n^2-4k^2n+k^2+6kn-3k+2}{2}-(2kn+n)\frac{2kn-n-2k+3}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} \htmlClass{explanationCircle explanationCircle13}{\textcircled {13}} } }}}\frac{4k^2n^2-4k^2n+k^2+6kn-3k+2}{2}-\frac{4k^2n^2-4k^2n+4kn-n^2+3n}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle14}{\textcircled {14}} } }}}\frac{k^2+2kn+n^2-3k-3n+2}{2}\end{aligned} $$ | |
| ① | $$ \left( \color{blue}{2k+1}\right) \cdot n = 2kn+n $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( k-1 \right) = -k+1 $$ |
| ③ | $$ \left( \color{blue}{2k+1-2}\right) \cdot n = 2kn+n-2n $$ |
| ④ | Combine like terms: $$ 2k+ \color{blue}{1} \color{blue}{-4} = 2k \color{blue}{-3} $$ |
| ⑤ | Remove the parentheses by changing the sign of each term within them. $$ - \left( k-1 \right) = -k+1 $$ |
| ⑥ | Combine like terms: $$ 2kn-k+ \color{blue}{1} + \color{blue}{1} = 2kn-k+ \color{blue}{2} $$ |
| ⑦ | Combine like terms: $$ 2kn+ \color{blue}{n} \color{blue}{-2n} = 2kn \color{blue}{-n} $$ |
| ⑧ | Multiply each term of $ \left( \color{blue}{2kn-k+1}\right) $ by each term in $ \left( 2kn-k+2\right) $. $$ \left( \color{blue}{2kn-k+1}\right) \cdot \left( 2kn-k+2\right) = 4k^2n^2-2k^2n+4kn-2k^2n+k^2-2k+2kn-k+2 $$ |
| ⑨ | Combine like terms: $$ 4k^2n^2 \color{blue}{-2k^2n} + \color{red}{4kn} \color{blue}{-2k^2n} +k^2 \color{green}{-2k} + \color{red}{2kn} \color{green}{-k} +2 = \\ = 4k^2n^2 \color{blue}{-4k^2n} +k^2+ \color{red}{6kn} \color{green}{-3k} +2 $$ |
| ⑩ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2k-3 \right) = -2k+3 $$ |
| ⑪ | Multiply each term of $ \left( \color{blue}{2kn-k+1}\right) $ by each term in $ \left( 2kn-k+2\right) $. $$ \left( \color{blue}{2kn-k+1}\right) \cdot \left( 2kn-k+2\right) = 4k^2n^2-2k^2n+4kn-2k^2n+k^2-2k+2kn-k+2 $$ |
| ⑫ | Combine like terms: $$ 4k^2n^2 \color{blue}{-2k^2n} + \color{red}{4kn} \color{blue}{-2k^2n} +k^2 \color{green}{-2k} + \color{red}{2kn} \color{green}{-k} +2 = \\ = 4k^2n^2 \color{blue}{-4k^2n} +k^2+ \color{red}{6kn} \color{green}{-3k} +2 $$ |
| ⑬ | Multiply $2kn+n$ by $ \dfrac{2kn-n-2k+3}{2} $ to get $ \dfrac{4k^2n^2-4k^2n+4kn-n^2+3n}{2} $. Step 1: Write $ 2kn+n $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2kn+n \cdot \frac{2kn-n-2k+3}{2} & \xlongequal{\text{Step 1}} \frac{2kn+n}{\color{red}{1}} \cdot \frac{2kn-n-2k+3}{2} \xlongequal{\text{Step 2}} \frac{ \left( 2kn+n \right) \cdot \left( 2kn-n-2k+3 \right) }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4k^2n^2 -\cancel{2kn^2}-4k^2n+6kn+ \cancel{2kn^2}-n^2-2kn+3n }{ 2 } = \frac{4k^2n^2-4k^2n+4kn-n^2+3n}{2} \end{aligned} $$ |
| ⑭ | Subtract $ \dfrac{4k^2n^2-4k^2n+4kn-n^2+3n}{2} $ from $ \dfrac{4k^2n^2-4k^2n+k^2+6kn-3k+2}{2} $ to get $ \dfrac{k^2+2kn+n^2-3k-3n+2}{2} $. To subtract expressions with the same denominators, we subtract the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{4k^2n^2-4k^2n+k^2+6kn-3k+2}{2} - \frac{4k^2n^2-4k^2n+4kn-n^2+3n}{2} & = \frac{4k^2n^2-4k^2n+k^2+6kn-3k+2}{\color{blue}{2}} - \frac{4k^2n^2-4k^2n+4kn-n^2+3n}{\color{blue}{2}} = \\[1ex] &=\frac{ 4k^2n^2-4k^2n+k^2+6kn-3k+2 - \left( 4k^2n^2-4k^2n+4kn-n^2+3n \right) }{ \color{blue}{ 2 }}= \frac{k^2+2kn+n^2-3k-3n+2}{2} \end{aligned} $$ |