LCM( 96, 62, 120 ) = 14880
Step 1: Write down factorisation of each number:
96 = 2 · 2 · 2 · 2 · 2 · 3
62 = 2 · 31
120 = 2 · 2 · 2 · 3 · 5
Step 2 : Match primes vertically:
| 96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||
| 62 | = | 2 | · | 31 | ||||||||||||
| 120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
| 96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||||
| 62 | = | 2 | · | 31 | ||||||||||||||
| 120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | ||||||||
| LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | · | 31 | = | 14880 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.