LCM( 72, 120, 164 ) = 14760
Step 1: Write down factorisation of each number:
72 = 2 · 2 · 2 · 3 · 3
120 = 2 · 2 · 2 · 3 · 5
164 = 2 · 2 · 41
Step 2 : Match primes vertically:
| 72 | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||
| 120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | ||||
| 164 | = | 2 | · | 2 | · | 41 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
| 72 | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||||
| 120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | ||||||
| 164 | = | 2 | · | 2 | · | 41 | ||||||||||
| LCM | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 5 | · | 41 | = | 14760 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.