LCM( 60, 156, 204 ) = 13260
Step 1: Write down factorisation of each number:
60 = 2 · 2 · 3 · 5
156 = 2 · 2 · 3 · 13
204 = 2 · 2 · 3 · 17
Step 2 : Match primes vertically:
| 60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||
| 156 | = | 2 | · | 2 | · | 3 | · | 13 | ||||
| 204 | = | 2 | · | 2 | · | 3 | · | 17 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
| 60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||
| 156 | = | 2 | · | 2 | · | 3 | · | 13 | ||||||
| 204 | = | 2 | · | 2 | · | 3 | · | 17 | ||||||
| LCM | = | 2 | · | 2 | · | 3 | · | 5 | · | 13 | · | 17 | = | 13260 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.