LCM( 56, 60, 120 ) = 840
Step 1: Write down factorisation of each number:
56 = 2 · 2 · 2 · 7
60 = 2 · 2 · 3 · 5
120 = 2 · 2 · 2 · 3 · 5
Step 2 : Match primes vertically:
| 56 | = | 2 | · | 2 | · | 2 | · | 7 | ||||
| 60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||
| 120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
| 56 | = | 2 | · | 2 | · | 2 | · | 7 | ||||||
| 60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||
| 120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | ||||
| LCM | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | · | 7 | = | 840 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.