LCM( 512, 320 ) = 2560
Step 1: Write down factorisation of each number:
512 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2
320 = 2 · 2 · 2 · 2 · 2 · 2 · 5
Step 2 : Match primes vertically:
| 512 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||
| 320 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
| 512 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||||
| 320 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 5 | ||||||||
| LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 5 | = | 2560 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.