LCM( 406, 348, 256 ) = 155904
Step 1: Write down factorisation of each number:
406 = 2 · 7 · 29
348 = 2 · 2 · 3 · 29
256 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2
Step 2 : Match primes vertically:
| 406 | = | 2 | · | 7 | · | 29 | ||||||||||||||||
| 348 | = | 2 | · | 2 | · | 3 | · | 29 | ||||||||||||||
| 256 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
| 406 | = | 2 | · | 7 | · | 29 | ||||||||||||||||||
| 348 | = | 2 | · | 2 | · | 3 | · | 29 | ||||||||||||||||
| 256 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||||||||
| LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 7 | · | 29 | = | 155904 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.