LCM( 36, 48, 52 ) = 1872
Step 1: Write down factorisation of each number:
36 = 2 · 2 · 3 · 3
48 = 2 · 2 · 2 · 2 · 3
52 = 2 · 2 · 13
Step 2 : Match primes vertically:
| 36 | = | 2 | · | 2 | · | 3 | · | 3 | ||||||
| 48 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||
| 52 | = | 2 | · | 2 | · | 13 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
| 36 | = | 2 | · | 2 | · | 3 | · | 3 | ||||||||
| 48 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||||
| 52 | = | 2 | · | 2 | · | 13 | ||||||||||
| LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 13 | = | 1872 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.