LCM( 30, 45, 14 ) = 630
Step 1: Write down factorisation of each number:
30 = 2 · 3 · 5
45 = 3 · 3 · 5
14 = 2 · 7
Step 2 : Match primes vertically:
| 30 | = | 2 | · | 3 | · | 5 | ||||
| 45 | = | 3 | · | 3 | · | 5 | ||||
| 14 | = | 2 | · | 7 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
| 30 | = | 2 | · | 3 | · | 5 | ||||||
| 45 | = | 3 | · | 3 | · | 5 | ||||||
| 14 | = | 2 | · | 7 | ||||||||
| LCM | = | 2 | · | 3 | · | 3 | · | 5 | · | 7 | = | 630 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.