LCM( 144, 240, 320 ) = 2880
Step 1: Write down factorisation of each number:
144 = 2 · 2 · 2 · 2 · 3 · 3
240 = 2 · 2 · 2 · 2 · 3 · 5
320 = 2 · 2 · 2 · 2 · 2 · 2 · 5
Step 2 : Match primes vertically:
| 144 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||||
| 240 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | ||||||
| 320 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
| 144 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||||||
| 240 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | ||||||||
| 320 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 5 | ||||||
| LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 5 | = | 2880 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.