LCM( 12, 24, 48, 60, 96 ) = 480
Step 1: Write down factorisation of each number:
12 = 2 · 2 · 3
24 = 2 · 2 · 2 · 3
48 = 2 · 2 · 2 · 2 · 3
60 = 2 · 2 · 3 · 5
96 = 2 · 2 · 2 · 2 · 2 · 3
Step 2 : Match primes vertically:
| 12 | = | 2 | · | 2 | · | 3 | ||||||||
| 24 | = | 2 | · | 2 | · | 2 | · | 3 | ||||||
| 48 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||
| 60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||
| 96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
| 12 | = | 2 | · | 2 | · | 3 | ||||||||||
| 24 | = | 2 | · | 2 | · | 2 | · | 3 | ||||||||
| 48 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||||
| 60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||||
| 96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||
| LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | = | 480 |