LCM( 110, 60, 12 ) = 660
Step 1: Write down factorisation of each number:
110 = 2 · 5 · 11
60 = 2 · 2 · 3 · 5
12 = 2 · 2 · 3
Step 2 : Match primes vertically:
| 110 | = | 2 | · | 5 | · | 11 | ||||
| 60 | = | 2 | · | 2 | · | 3 | · | 5 | ||
| 12 | = | 2 | · | 2 | · | 3 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
| 110 | = | 2 | · | 5 | · | 11 | ||||||
| 60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||
| 12 | = | 2 | · | 2 | · | 3 | ||||||
| LCM | = | 2 | · | 2 | · | 3 | · | 5 | · | 11 | = | 660 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.