LCM( 105, 462 ) = 2310
Step 1: Write down factorisation of each number:
105 = 3 · 5 · 7
462 = 2 · 3 · 7 · 11
Step 2 : Match primes vertically:
| 105 | = | 3 | · | 5 | · | 7 | ||||
| 462 | = | 2 | · | 3 | · | 7 | · | 11 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
| 105 | = | 3 | · | 5 | · | 7 | ||||||
| 462 | = | 2 | · | 3 | · | 7 | · | 11 | ||||
| LCM | = | 2 | · | 3 | · | 5 | · | 7 | · | 11 | = | 2310 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.