Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 4851 | $$ $$ | 1 |
| 4852 | $$ $$ | 1 |
| 4853 | $$ $$ | 1 |
| 4854 | $$ $$ | 1 |
| 4855 | $$ $$ | 1 |
| 4856 | $$ $$ | 1 |
| 4857 | $$ $$ | 1 |
| 4858 | $$ $$ | 1 |
| 4859 | $$ $$ | 1 |
| 4860 | $$ $$ | 1 |
| 4861 | $$ \displaystyle\int \dfrac{4}{4{x}^{2}+36}\, \mathrm d x $$ | 1 |
| 4862 | $$ $$ | 1 |
| 4863 | $$ \displaystyle\int \cos\left(1-x\right)\, \mathrm d x $$ | 1 |
| 4864 | $$ \displaystyle\int^{\pi}_{0} \cos\left(1-x\right)\, \mathrm d x $$ | 1 |
| 4865 | $$ \displaystyle\int^{\pi}_{0} \cos\left(1-q{\cdot}\sin\left(x\right)\right)\, \mathrm d x $$ | 1 |
| 4866 | $$ \displaystyle\int^{\pi}_{0} \cos\left(1-\sin\left(x\right)\right)\, \mathrm d x $$ | 1 |
| 4867 | $$ \displaystyle\int^{\pi}_{0} \cos\left(1-\sin\left(x\right)\right)\, \mathrm d x $$ | 1 |
| 4868 | $$ \displaystyle\int^{\pi}_{0} \cos\left(\sin\left(x\right)\right)\, \mathrm d x $$ | 1 |
| 4869 | $$ \displaystyle\int^{2}_{0} \dfrac{10x-30}{2x-3}\, \mathrm d x $$ | 1 |
| 4870 | $$ \displaystyle\int \cos\left(\sqrt{x}\right)\, \mathrm d x $$ | 1 |
| 4871 | $$ \displaystyle\int^{\infty}_{0} \cos\left(\sqrt{x}\right)\, \mathrm d x $$ | 1 |
| 4872 | $$ \displaystyle\int \dfrac{{x}^{2}}{3+{x}^{2}}\, \mathrm d x $$ | 1 |
| 4873 | $$ \displaystyle\int^{1/2}_{0} \dfrac{2{x}^{2}+2}{{x}^{2}-1}\, \mathrm d x $$ | 1 |
| 4874 | $$ \displaystyle\int \dfrac{-{x}^{3}}{2}\, \mathrm d x $$ | 1 |
| 4875 | $$ \displaystyle\int {\left(\cos\left(2x\right)\right)}^{3}{\cdot}\sin\left(2x\right)\, \mathrm d x $$ | 1 |
| 4876 | $$ \displaystyle\int \sin\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 1 |
| 4877 | $$ \displaystyle\int \dfrac{11{\cdot}\ln\left(x\right)}{x{\cdot}\sqrt{2+{\left(\ln\left(x\right)\right)}^{2}}}\, \mathrm d x $$ | 1 |
| 4878 | $$ \displaystyle\int \dfrac{10{x}^{2}+4}{\left(x-9\right){\cdot}\left(x-8\right)}\, \mathrm d x $$ | 1 |
| 4879 | $$ \displaystyle\int^{2}_{----1} 0\, \mathrm d x $$ | 1 |
| 4880 | $$ \displaystyle\int 5{\cdot}\cos\left(x\right)\, \mathrm d x $$ | 1 |
| 4881 | $$ \displaystyle\int x{\cdot}\sec\left(x\right){\cdot}\left({x}^{2}-5\right)\, \mathrm d x $$ | 1 |
| 4882 | $$ \displaystyle\int {\left({x}^{3}-4x\right)}^{4}{\cdot}\left(9{x}^{2}-12\right)\, \mathrm d x $$ | 1 |
| 4883 | $$ \displaystyle\int \dfrac{x+7}{x+9}\, \mathrm d x $$ | 1 |
| 4884 | $$ $$ | 1 |
| 4885 | $$ $$ | 1 |
| 4886 | $$ $$ | 1 |
| 4887 | $$ \displaystyle\int 3+{x}^{2}\, \mathrm d x $$ | 1 |
| 4888 | $$ \displaystyle\int \left(2{x}^{3}+5{x}^{5}\right){\cdot}\left(3{x}^{-2}+{x}^{2}\right)\, \mathrm d x $$ | 1 |
| 4889 | $$ $$ | 1 |
| 4890 | $$ $$ | 1 |
| 4891 | $$ $$ | 1 |
| 4892 | $$ $$ | 1 |
| 4893 | $$ $$ | 1 |
| 4894 | $$ \displaystyle\int^{-4}_{2} 23{x}^{2}-4x-16\, \mathrm d x $$ | 1 |
| 4895 | $$ \displaystyle\int \dfrac{1}{1+\dfrac{x}{a}}\, \mathrm d x $$ | 1 |
| 4896 | $$ $$ | 1 |
| 4897 | $$ $$ | 1 |
| 4898 | $$ $$ | 1 |
| 4899 | $$ $$ | 1 |
| 4900 | $$ $$ | 1 |