Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 4701 | $$ $$ | 1 |
| 4702 | $$ $$ | 1 |
| 4703 | $$ $$ | 1 |
| 4704 | $$ $$ | 1 |
| 4705 | $$ $$ | 1 |
| 4706 | $$ $$ | 1 |
| 4707 | $$ \displaystyle\int^{\infty}_{0} \sin\left(ax\right){\cdot}\mathrm{e}^{-x}\, \mathrm d x $$ | 1 |
| 4708 | $$ \displaystyle\int \left({x}^{2}+2x+17\right){\cdot}{\mathrm{e}}^{x}\, \mathrm d x $$ | 1 |
| 4709 | $$ \displaystyle\int^{10}_{0} \ln\left(\sqrt{\tan\left(x\right)}\right)\, \mathrm d x $$ | 1 |
| 4710 | $$ \displaystyle\int^{\pi/4}_{0} \left(1+\cos\left(x\right)\right){\cdot}\left(x+\sin\left(x\right)+4\right)\, \mathrm d x $$ | 1 |
| 4711 | $$ \displaystyle\int^{\pi/2}_{0} \left(1+\cos\left(x\right)\right){\cdot}\left(x+\sin\left(x\right)+4\right)\, \mathrm d x $$ | 1 |
| 4712 | $$ \displaystyle\int \dfrac{x}{{x}^{4}+1}\, \mathrm d x $$ | 1 |
| 4713 | $$ \displaystyle\int^{2\pi}_{0} \dfrac{1}{2}{\cdot}{\left(4+2{\cdot}\cos\left(x\right)\right)}^{2}\, \mathrm d x $$ | 1 |
| 4714 | $$ \int \frac{{25}}{{2}} \, d\,x $$ | 1 |
| 4715 | $$ \displaystyle\int^{\infty}_{0} x{\cdot}{\left(1+{x}^{2}\right)}^{-9}\, \mathrm d x $$ | 1 |
| 4716 | $$ $$ | 1 |
| 4717 | $$ $$ | 1 |
| 4718 | $$ $$ | 1 |
| 4719 | $$ $$ | 1 |
| 4720 | $$ $$ | 1 |
| 4721 | $$ $$ | 1 |
| 4722 | $$ $$ | 1 |
| 4723 | $$ $$ | 1 |
| 4724 | $$ $$ | 1 |
| 4725 | $$ $$ | 1 |
| 4726 | $$ $$ | 1 |
| 4727 | $$ $$ | 1 |
| 4728 | $$ $$ | 1 |
| 4729 | $$ \displaystyle\int {\left(\cot\left(x\right)\right)}^{3}\, \mathrm d x $$ | 1 |
| 4730 | $$ $$ | 1 |
| 4731 | $$ $$ | 1 |
| 4732 | $$ $$ | 1 |
| 4733 | $$ $$ | 1 |
| 4734 | $$ $$ | 1 |
| 4735 | $$ $$ | 1 |
| 4736 | $$ $$ | 1 |
| 4737 | $$ $$ | 1 |
| 4738 | $$ \displaystyle\int \dfrac{{x}^{2}}{25}\, \mathrm d x $$ | 1 |
| 4739 | $$ $$ | 1 |
| 4740 | $$ $$ | 1 |
| 4741 | $$ $$ | 1 |
| 4742 | $$ $$ | 1 |
| 4743 | $$ $$ | 1 |
| 4744 | $$ $$ | 1 |
| 4745 | $$ $$ | 1 |
| 4746 | $$ $$ | 1 |
| 4747 | $$ $$ | 1 |
| 4748 | $$ $$ | 1 |
| 4749 | $$ $$ | 1 |
| 4750 | $$ $$ | 1 |