Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 1901 | $$ $$ | 2 |
| 1902 | $$ \displaystyle\int^{\pi/2}_{--\pi/2} \sin\left(x\right)\, \mathrm d x $$ | 2 |
| 1903 | $$ $$ | 2 |
| 1904 | $$ $$ | 2 |
| 1905 | $$ $$ | 2 |
| 1906 | $$ $$ | 2 |
| 1907 | $$ $$ | 2 |
| 1908 | $$ $$ | 2 |
| 1909 | $$ $$ | 2 |
| 1910 | $$ $$ | 2 |
| 1911 | $$ $$ | 2 |
| 1912 | $$ $$ | 2 |
| 1913 | $$ $$ | 2 |
| 1914 | $$ $$ | 2 |
| 1915 | $$ $$ | 2 |
| 1916 | $$ $$ | 2 |
| 1917 | $$ \displaystyle\int 2000{\cdot}\dfrac{\sin\left(2\right){\cdot}{\pi}{\cdot}x}{3}\, \mathrm d x $$ | 2 |
| 1918 | $$ $$ | 2 |
| 1919 | $$ \displaystyle\int {x}^{3}{\cdot}\sqrt{{x}^{2}-36}\, \mathrm d x $$ | 2 |
| 1920 | $$ \displaystyle\int \sqrt{4+3x}\, \mathrm d x $$ | 2 |
| 1921 | $$ $$ | 2 |
| 1922 | $$ $$ | 2 |
| 1923 | $$ $$ | 2 |
| 1924 | $$ $$ | 2 |
| 1925 | $$ $$ | 2 |
| 1926 | $$ $$ | 2 |
| 1927 | $$ \displaystyle\int^{\pi/4}_{0} \sec\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 2 |
| 1928 | $$ \displaystyle\int^{\pi/4}_{0} \sec\left(\colosqrt{osqrtangesqrted}{\squasqrte}\sqrtight)\, \mathsqrtm d x $$ | 2 |
| 1929 | $$ \displaystyle\int \dfrac{1}{{x}^{2}}{\cdot}\sqrt{{x}^{2}+4}\, \mathrm d x $$ | 2 |
| 1930 | $$ \displaystyle\int \dfrac{4x+3}{\sqrt{2{\cdot}{\left(x-2\right)}^{2}+3}}\, \mathrm d x $$ | 2 |
| 1931 | $$ \displaystyle\int \dfrac{4x+3}{s}{\cdot}q{\cdot}\sqrt{t}{\cdot}\left(2{\cdot}{\left(x-2\right)}^{2}-3\right)\, \mathrm d x $$ | 2 |
| 1932 | $$ \displaystyle\int \dfrac{4x+3}{\sqrt{2{\cdot}{\left(x-2\right)}^{2}-3}}\, \mathrm d x $$ | 2 |
| 1933 | $$ \displaystyle\int \dfrac{\sqrt{x}}{4+{x}^{3}}\, \mathrm d x $$ | 2 |
| 1934 | $$ \displaystyle\int 0.0002{x}^{2}-0.03x+150\, \mathrm d x $$ | 2 |
| 1935 | $$ \displaystyle\int \dfrac{{4000}^{3}}{1500}-3{\cdot}\dfrac{{4000}^{2}}{200}+150{\cdot}4000\, \mathrm d x $$ | 2 |
| 1936 | $$ \displaystyle\int \dfrac{1}{4x{\cdot}\sqrt{{\left(\dfrac{x}{2}\right)}^{2}-1}}\, \mathrm d x $$ | 2 |
| 1937 | $$ \displaystyle\int \dfrac{10}{3x{\cdot}\sqrt{{\left(\dfrac{9x}{2}\right)}^{2}-1}}\, \mathrm d x $$ | 2 |
| 1938 | $$ \displaystyle\int \dfrac{-3}{{x}^{2}{\cdot}{\mathrm{e}}^{\frac{2}{x}}}\, \mathrm d x $$ | 2 |
| 1939 | $$ \displaystyle\int {x}^{3}-{\mathrm{e}}^{2x}{\cdot}\tan\left(x\right)\, \mathrm d x $$ | 2 |
| 1940 | $$ \displaystyle\int \dfrac{4x+12}{2x+5}\, \mathrm d x $$ | 2 |
| 1941 | $$ \displaystyle\int {\left(\sec\left(3x\right)\right)}^{29}\, \mathrm d x $$ | 2 |
| 1942 | $$ \displaystyle\int {\left(\sec\left(3x\right)\right)}^{2}{\cdot}\left(\dfrac{1}{2}{\cdot}{\mathrm{e}}^{5x}{\cdot}{\left(\cos\left(3x\right)\right)}^{2}-2\right)\, \mathrm d x $$ | 2 |
| 1943 | $$ \displaystyle\int \dfrac{1}{{\left(25+{x}^{2}\right)}^{\frac{1}{2}}}\, \mathrm d x $$ | 2 |
| 1944 | $$ \displaystyle\int^{0.8}_{0} \dfrac{{x}^{2}}{{\left(16-25{x}^{2}\right)}^{\frac{1}{2}}}\, \mathrm d x $$ | 2 |
| 1945 | $$ \displaystyle\int \dfrac{{x}^{2}}{{\left(16-25{x}^{2}\right)}^{\frac{1}{2}}}\, \mathrm d x $$ | 2 |
| 1946 | $$ \displaystyle\int \dfrac{63}{16{\cdot}\sqrt{1-{\left(\dfrac{7x}{2}\right)}^{2}}}\, \mathrm d x $$ | 2 |
| 1947 | $$ $$ | 2 |
| 1948 | $$ \displaystyle\int 3{\cdot}{\left(\sin\left(x\right)\right)}^{2}{\cdot}{\left(\cos\left(x\right)\right)}^{2}\, \mathrm d x $$ | 2 |
| 1949 | $$ \displaystyle\int 3{\cdot}{\left(\cos\left(x\right)\right)}^{2}\, \mathrm d x $$ | 2 |
| 1950 | $$ \displaystyle\int 3{\cdot}\cos\left({x}^{2}\right)\, \mathrm d x $$ | 2 |