Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 1451 | $$ \displaystyle\int^{\pi}_{0} 325{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
| 1452 | $$ \displaystyle\int^{4}_{0} \sqrt{{\left(-{\pi}{\cdot}\sin\left({\pi}{\cdot}t\right)\right)}^{2}+4+{\left(2{\pi}{\cdot}\sin\left(2{\pi}{\cdot}t\right)\right)}^{2}}\, \mathrm d x $$ | 2 |
| 1453 | $$ \displaystyle\int x{\cdot}{\left(4x+5\right)}^{3}\, \mathrm d x $$ | 2 |
| 1454 | $$ \displaystyle\int \tan\left(13x\right)\, \mathrm d x $$ | 2 |
| 1455 | $$ \displaystyle\int^{1}_{0} 2{x}^{4}-3{x}^{2}+5\, \mathrm d x $$ | 2 |
| 1456 | $$ \displaystyle\int^{2}_{1} {x}^{\frac{1}{3}}\, \mathrm d x $$ | 2 |
| 1457 | $$ \displaystyle\int^{7}_{1} \dfrac{1}{\sqrt{2x+2}}\, \mathrm d x $$ | 2 |
| 1458 | $$ \displaystyle\int^{4}_{1} \dfrac{{x}^{4}-8}{{x}^{2}}\, \mathrm d x $$ | 2 |
| 1459 | $$ \displaystyle\int^{\pi/2}_{0} 4x+3+\cos\left(x\right)\, \mathrm d x $$ | 2 |
| 1460 | $$ \displaystyle\int^{3}_{-1} \dfrac{1}{{\left(x+2\right)}^{2}}\, \mathrm d x $$ | 2 |
| 1461 | $$ \displaystyle\int^{-2}_{-4} {x}^{2}+\dfrac{1}{{x}^{3}}\, \mathrm d x $$ | 2 |
| 1462 | $$ \displaystyle\int^{3}_{1} \dfrac{{x}^{2}+1}{\sqrt{{x}^{3}+3x}}\, \mathrm d x $$ | 2 |
| 1463 | $$ \displaystyle\int^{4}_{0} \sqrt{x}-(\sqrt{2x+1})\, \mathrm d x $$ | 2 |
| 1464 | $$ \displaystyle\int^{-1}_{-4} \dfrac{1-{x}^{4}}{{x}^{2}}\, \mathrm d x $$ | 2 |
| 1465 | $$ \displaystyle\int 2{\mathrm{e}}^{x}+\dfrac{3}{x}+\dfrac{2}{{x}^{2}}\, \mathrm d x $$ | 2 |
| 1466 | $$ $$ | 2 |
| 1467 | $$ \displaystyle\int {x}^{4}{\cdot}{\left({\left(\tanh\left(x\right)\right)}^{5}\right)}^{3}{\cdot}{\left({\left(\mathrm{sech}\left(x\right)\right)}^{5}\right)}^{2}\, \mathrm d x $$ | 2 |
| 1468 | $$ \displaystyle\int {\mathrm{e}}^{-{x}^{2}}\, \mathrm d x $$ | 2 |
| 1469 | $$ \displaystyle\int^{-2}_{-4} \dfrac{2}{{x}^{3}}\, \mathrm d x $$ | 2 |
| 1470 | $$ \displaystyle\int \dfrac{1}{{x}^{3}}\, \mathrm d x $$ | 2 |
| 1471 | $$ \displaystyle\int^{\pi/2}_{0} \sqsqrtt{1}+4{\cdot}{\left(\cos\left(2x\sqrtight)\sqrtight)}^{2}\, \mathsqrtm d x $$ | 2 |
| 1472 | $$ \displaystyle\int^{\pi/2}_{0} \sqrt{1+4{\cdot}{\left(\cos\left(2x\right)\right)}^{2}}\, \mathrm d x $$ | 2 |
| 1473 | $$ \displaystyle\int^{5}_{-5} {x}^{2}-2\, \mathrm d x $$ | 2 |
| 1474 | $$ \displaystyle\int^{\pi/2}_{0} \dfrac{\sin\left(x\right){\cdot}\cos\left(x\right)}{{\left(\cos\left(x\right)\right)}^{4}+{\left(\sin\left(x\right)\right)}^{4}}\, \mathrm d x $$ | 2 |
| 1475 | $$ \displaystyle\int {\mathrm{e}}^{-\left(2+\frac{1}{x}\right)}\, \mathrm d x $$ | 2 |
| 1476 | $$ \displaystyle\int c{\cdot}\left(1-{x}^{2}\right)\, \mathrm d x $$ | 2 |
| 1477 | $$ \displaystyle\int 1-{x}^{2}\, \mathrm d x $$ | 2 |
| 1478 | $$ \displaystyle\int \dfrac{{x}^{3}}{\sqrt{{x}^{2}+100}}\, \mathrm d x $$ | 2 |
| 1479 | $$ \displaystyle\int^{4}_{1} 3{t}^{3}+4{\mathrm{e}}^{3t}+\dfrac{2}{3}+4{\cdot}\cos\left(3t\right)\, \mathrm d x $$ | 2 |
| 1480 | $$ \displaystyle\int 10x{\cdot}{\left({x}^{2}+3\right)}^{4}\, \mathrm d x $$ | 2 |
| 1481 | $$ \displaystyle\int^{1}_{0} {x}^{2}{\cdot}{\mathrm{e}}^{3x}{\cdot}\left(1+x\right)\, \mathrm d x $$ | 2 |
| 1482 | $$ \displaystyle\int^{5}_{1} x{\cdot}\sqrt{5}{\cdot}{x}^{2}-4\, \mathrm d x $$ | 2 |
| 1483 | $$ \displaystyle\int \dfrac{{x}^{2}-14x}{{\left(x-7\right)}^{2}}\, \mathrm d x $$ | 2 |
| 1484 | $$ \displaystyle\int \dfrac{1}{{x}^{2}{\cdot}\sqrt{16-{x}^{2}}}\, \mathrm d x $$ | 2 |
| 1485 | $$ \displaystyle\int^{10}_{0} 5-6x+{x}^{2}\, \mathrm d x $$ | 2 |
| 1486 | $$ \int^{\pi}_{0} {2}\sqrt{{{2}-{\cos{{\left({x}\right)}}}}}^{{2}}+\sqrt{{{2}{\sin{{\left({x}\right)}}}}}^{{2}} \, d\,x $$ | 2 |
| 1487 | $$ \displaystyle\int \dfrac{1}{4}{\cdot}\tan\left(x\right)\, \mathrm d x $$ | 2 |
| 1488 | $$ \displaystyle\int \dfrac{1}{4{\cdot}\tan\left(x\right)}\, \mathrm d x $$ | 2 |
| 1489 | $$ \displaystyle\int^{\pi}_{0} \dfrac{x{\cdot}\sin\left(x\right)}{3+\cos\left(2x\right)}\, \mathrm d x $$ | 2 |
| 1490 | $$ \displaystyle\int \sin\left({x}^{2}\right){\cdot}\cos\left({x}^{3}\right)\, \mathrm d x $$ | 2 |
| 1491 | $$ \displaystyle\int \sin\left(x\right){\cdot}\cos\left({x}^{3}\right)\, \mathrm d x $$ | 2 |
| 1492 | $$ \displaystyle\int \sin\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 2 |
| 1493 | $$ \displaystyle\int \dfrac{{x}^{7}}{x+1}\, \mathrm d x $$ | 2 |
| 1494 | $$ \displaystyle\int^{4}_{0} \dfrac{{x}^{\frac{3}{2}}}{x+1}\, \mathrm d x $$ | 2 |
| 1495 | $$ \displaystyle\int \sqrt{\dfrac{1+9{x}^{4}}{{x}^{3}-1}}\, \mathrm d x $$ | 2 |
| 1496 | $$ \displaystyle\int 2x-3\, \mathrm d x $$ | 2 |
| 1497 | $$ $$ | 2 |
| 1498 | $$ \displaystyle\int \dfrac{{\mathrm{e}}^{x}}{{\left(1-x\right)}^{2}}\, \mathrm d x $$ | 2 |
| 1499 | $$ \displaystyle\int^{2}_{0} x+6-{x}^{2}+4x-6\, \mathrm d x $$ | 2 |
| 1500 | $$ 3 $$ | 2 |