Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 101 | $$ \displaystyle\int^{2.25}_{1} \dfrac{4.75}{x}\, \mathrm d x $$ | 6 |
| 102 | $$ $$ | 6 |
| 103 | $$ $$ | 6 |
| 104 | $$ $$ | 6 |
| 105 | $$ $$ | 6 |
| 106 | $$ $$ | 6 |
| 107 | $$ $$ | 6 |
| 108 | $$ $$ | 6 |
| 109 | $$ $$ | 6 |
| 110 | $$ $$ | 6 |
| 111 | $$ $$ | 6 |
| 112 | $$ \displaystyle\int^{3}_{0} \dfrac{12000}{500-25x}\, \mathrm d x $$ | 6 |
| 113 | $$ \displaystyle\int \dfrac{{2}^{x}-{2}^{-x}}{{2}^{x}+{2}^{-x}}\, \mathrm d x $$ | 6 |
| 114 | $$ $$ | 6 |
| 115 | $$ $$ | 6 |
| 116 | $$ \displaystyle\int^{\infty}_{0} \dfrac{{x}^{3}}{{\mathrm{e}}^{x}-1}\, \mathrm d x $$ | 6 |
| 117 | $$ \displaystyle\int \csc\left(x\right)\, \mathrm d x $$ | 6 |
| 118 | $$ $$ | 6 |
| 119 | $$ \displaystyle\int^{2\pi}_{0} \sin\left(x\right)\, \mathrm d x $$ | 6 |
| 120 | $$ $$ | 6 |
| 121 | $$ $$ | 6 |
| 122 | $$ $$ | 6 |
| 123 | $$ $$ | 6 |
| 124 | $$ \displaystyle\int {x}^{2}{\cdot}\sqrt{3+2{x}^{2}}\, \mathrm d x $$ | 6 |
| 125 | $$ $$ | 6 |
| 126 | $$ $$ | 6 |
| 127 | $$ \displaystyle\int^{\pi/4}_{0} x\, \mathrm d x $$ | 6 |
| 128 | $$ $$ | 6 |
| 129 | $$ \displaystyle\int^{1}_{0} \sin\left({x}^{2}\right)\, \mathrm d x $$ | 6 |
| 130 | $$ $$ | 5 |
| 131 | $$ $$ | 5 |
| 132 | $$ \displaystyle\int^{\pi/2}_{0} \sqrt{\sin\left(x\right)}{\cdot}{\left(\cos\left(x\right)\right)}^{5}\, \mathrm d x $$ | 5 |
| 133 | $$ $$ | 5 |
| 134 | $$ $$ | 5 |
| 135 | $$ $$ | 5 |
| 136 | $$ $$ | 5 |
| 137 | $$ $$ | 5 |
| 138 | $$ \displaystyle\int^{7}_{0} 8{x}^{3}-{x}^{2}+5x-1\, \mathrm d x $$ | 5 |
| 139 | $$ $$ | 5 |
| 140 | $$ $$ | 5 |
| 141 | $$ $$ | 5 |
| 142 | $$ $$ | 5 |
| 143 | $$ \displaystyle\int^{4}_{e} 1-{x}^{\mathrm{e}}+{\mathrm{e}}^{x}-{\mathrm{e}}^{\mathrm{e}}\, \mathrm d x $$ | 5 |
| 144 | $$ $$ | 5 |
| 145 | $$ $$ | 5 |
| 146 | $$ $$ | 5 |
| 147 | $$ $$ | 5 |
| 148 | $$ \displaystyle\int {\mathrm{e}}^{2x}\, \mathrm d x $$ | 5 |
| 149 | $$ $$ | 5 |
| 150 | $$ \displaystyle\int \dfrac{1}{{x}^{3}+1}\, \mathrm d x $$ | 5 |