Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 6551 | $$ \displaystyle\int^{2}_{--5} -3x+7\, \mathrm d x $$ | 1 |
| 6552 | $$ \displaystyle\int^{2}_{----5} -3x+7\, \mathrm d x $$ | 1 |
| 6553 | $$ \displaystyle\int \dfrac{x+2}{{x}^{2}-2x+3}\, \mathrm d x $$ | 1 |
| 6554 | $$ $$ | 1 |
| 6555 | $$ $$ | 1 |
| 6556 | $$ $$ | 1 |
| 6557 | $$ $$ | 1 |
| 6558 | $$ $$ | 1 |
| 6559 | $$ $$ | 1 |
| 6560 | $$ $$ | 1 |
| 6561 | $$ $$ | 1 |
| 6562 | $$ $$ | 1 |
| 6563 | $$ $$ | 1 |
| 6564 | $$ $$ | 1 |
| 6565 | $$ $$ | 1 |
| 6566 | $$ $$ | 1 |
| 6567 | $$ \int {3}\pi{x} \, d\,x $$ | 1 |
| 6568 | $$ \int {3}\frac{{x}}{\sqrt{{x}}} \, d\,x $$ | 1 |
| 6569 | $$ \int \frac{{1}}{{x}}{\left({x}-{1}\right)} \, d\,x $$ | 1 |
| 6570 | $$ \int \frac{{1}}{{{x}{\left({x}-{1}\right)}}} \, d\,x $$ | 1 |
| 6571 | $$ \int {2}\frac{{x}}{{{x}^{{2}}-{1}}} \, d\,x $$ | 1 |
| 6572 | $$ \int {2}\frac{{x}}{{{1}-{x}^{{2}}}} \, d\,x $$ | 1 |
| 6573 | $$ \int \frac{{1}}{{{x}-{1}}} \, d\,x $$ | 1 |
| 6574 | $$ \int {\exp{{\left(\frac{{\ln{{\left({x}\right)}}}}{{-{x}}}\right)}}} \, d\,x $$ | 1 |
| 6575 | $$ \int \frac{{\exp{{\left({\ln{{\left({x}\right)}}}\right)}}}}{{-{x}}} \, d\,x $$ | 1 |
| 6576 | $$ \displaystyle\int 3{\cdot}\sin\left(3\right){\cdot}{x}^{3}\, \mathrm d x $$ | 1 |
| 6577 | $$ $$ | 1 |
| 6578 | $$ $$ | 1 |
| 6579 | $$ $$ | 1 |
| 6580 | $$ $$ | 1 |
| 6581 | $$ $$ | 1 |
| 6582 | $$ $$ | 1 |
| 6583 | $$ $$ | 1 |
| 6584 | $$ $$ | 1 |
| 6585 | $$ $$ | 1 |
| 6586 | $$ $$ | 1 |
| 6587 | $$ $$ | 1 |
| 6588 | $$ $$ | 1 |
| 6589 | $$ $$ | 1 |
| 6590 | $$ $$ | 1 |
| 6591 | $$ $$ | 1 |
| 6592 | $$ $$ | 1 |
| 6593 | $$ $$ | 1 |
| 6594 | $$ $$ | 1 |
| 6595 | $$ $$ | 1 |
| 6596 | $$ $$ | 1 |
| 6597 | $$ $$ | 1 |
| 6598 | $$ $$ | 1 |
| 6599 | $$ $$ | 1 |
| 6600 | $$ $$ | 1 |