Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 6351 | $$ \displaystyle\int {\left(\dfrac{1}{2}{\cdot}{x}^{2}-1\right)}^{8}\, \mathrm d x $$ | 1 |
| 6352 | $$ \displaystyle\int x{\cdot}{\left(x+1\right)}^{\frac{1}{2}}\, \mathrm d x $$ | 1 |
| 6353 | $$ \displaystyle\int 6400{x}^{2}-6505x+2686\, \mathrm d x $$ | 1 |
| 6354 | $$ \displaystyle\int 6400{x}^{2}\, \mathrm d x $$ | 1 |
| 6355 | $$ \displaystyle\int^{1}_{0} x{\cdot}\sqrt{1+{x}^{2}}\, \mathrm d x $$ | 1 |
| 6356 | $$ \displaystyle\int xsq{\cdot}\sqrt{t}{\cdot}\left(1+{x}^{2}\right)\, \mathrm d x $$ | 1 |
| 6357 | $$ \displaystyle\int x{\cdot}\sqrt{1+{x}^{2}}\, \mathrm d x $$ | 1 |
| 6358 | $$ $$ | 1 |
| 6359 | $$ $$ | 1 |
| 6360 | $$ $$ | 1 |
| 6361 | $$ $$ | 1 |
| 6362 | $$ $$ | 1 |
| 6363 | $$ $$ | 1 |
| 6364 | $$ $$ | 1 |
| 6365 | $$ $$ | 1 |
| 6366 | $$ $$ | 1 |
| 6367 | $$ \displaystyle\int^{1/2}_{0} \dfrac{1}{{\left(4{x}^{2}+1\right)}^{\frac{1}{2}}}\, \mathrm d x $$ | 1 |
| 6368 | $$ \displaystyle\int^{1}_{0} \dfrac{1}{x+1}\, \mathrm d x $$ | 1 |
| 6369 | $$ \displaystyle\int \dfrac{1}{x+1}\, \mathrm d x $$ | 1 |
| 6370 | $$ \displaystyle\int^{6}_{2} x{x}^{2}\, \mathrm d x $$ | 1 |
| 6371 | $$ \displaystyle\int^{\infty}_{0} \dfrac{\mathrm{e}^{\cos\left(x\right)}{\cdot}\cos\left(\sin\left(x\right)+x\right)}{1+{x}^{2}}\, \mathrm d x $$ | 1 |
| 6372 | $$ \displaystyle\int^{1}_{0} x{\cdot}\left(\dfrac{9}{5}{\cdot}{x}^{2}+\dfrac{2}{5}\right)\, \mathrm d x $$ | 1 |
| 6373 | $$ \displaystyle\int^{2}_{0} x{\cdot}\left(\dfrac{3}{10}{\cdot}x+\dfrac{1}{5}\right)\, \mathrm d x $$ | 1 |
| 6374 | $$ \displaystyle\int 1.5x\, \mathrm d x $$ | 1 |
| 6375 | $$ \displaystyle\int^{\infty}_{--\infty} x{\cdot}{\mathrm{e}}^{2}{\cdot}x\, \mathrm d x $$ | 1 |
| 6376 | $$ \displaystyle\int^{\infty}_{--\infty} x{\cdot}{\mathrm{e}}^{2x}\, \mathrm d x $$ | 1 |
| 6377 | $$ \displaystyle\int^{\infty}_{--\infty} x{\cdot}{\mathrm{e}}^{-2x}\, \mathrm d x $$ | 1 |
| 6378 | $$ \displaystyle\int^{\infty}_{0} x{\cdot}{\mathrm{e}}^{-2x}\, \mathrm d x $$ | 1 |
| 6379 | $$ \displaystyle\int^{\infty}_{--\infty} \dfrac{\sin\left(x\right)}{4+{x}^{2}}\, \mathrm d x $$ | 1 |
| 6380 | $$ \displaystyle\int {x}^{2}{\cdot}{\mathrm{e}}^{-x}\, \mathrm d x $$ | 1 |
| 6381 | $$ $$ | 1 |
| 6382 | $$ $$ | 1 |
| 6383 | $$ $$ | 1 |
| 6384 | $$ $$ | 1 |
| 6385 | $$ $$ | 1 |
| 6386 | $$ $$ | 1 |
| 6387 | $$ $$ | 1 |
| 6388 | $$ $$ | 1 |
| 6389 | $$ $$ | 1 |
| 6390 | $$ $$ | 1 |
| 6391 | $$ \displaystyle\int \dfrac{1}{1+49{x}^{2}}\, \mathrm d x $$ | 1 |
| 6392 | $$ \displaystyle\int \dfrac{1}{x{\cdot}\ln\left(x\right)}\, \mathrm d x $$ | 1 |
| 6393 | $$ 1 $$ | 1 |
| 6394 | $$ $$ | 1 |
| 6395 | $$ $$ | 1 |
| 6396 | $$ $$ | 1 |
| 6397 | $$ $$ | 1 |
| 6398 | $$ $$ | 1 |
| 6399 | $$ $$ | 1 |
| 6400 | $$ $$ | 1 |