Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 5951 | $$ $$ | 1 |
| 5952 | $$ $$ | 1 |
| 5953 | $$ $$ | 1 |
| 5954 | $$ $$ | 1 |
| 5955 | $$ $$ | 1 |
| 5956 | $$ $$ | 1 |
| 5957 | $$ $$ | 1 |
| 5958 | $$ $$ | 1 |
| 5959 | $$ $$ | 1 |
| 5960 | $$ $$ | 1 |
| 5961 | $$ $$ | 1 |
| 5962 | $$ $$ | 1 |
| 5963 | $$ $$ | 1 |
| 5964 | $$ $$ | 1 |
| 5965 | $$ $$ | 1 |
| 5966 | $$ $$ | 1 |
| 5967 | $$ $$ | 1 |
| 5968 | $$ $$ | 1 |
| 5969 | $$ $$ | 1 |
| 5970 | $$ $$ | 1 |
| 5971 | $$ $$ | 1 |
| 5972 | $$ $$ | 1 |
| 5973 | $$ $$ | 1 |
| 5974 | $$ $$ | 1 |
| 5975 | $$ $$ | 1 |
| 5976 | $$ \displaystyle\int \sqrt{9{x}^{2}-729}\, \mathrm d x $$ | 1 |
| 5977 | $$ \displaystyle\int^{\infty}_{--\infty} {\mathrm{e}}^{-{x}^{2}}\, \mathrm d x $$ | 1 |
| 5978 | $$ \displaystyle\int^{\pi/2}_{0} \sqrt{1}+4{\cdot}{\left(\cos\left(2x\right)\right)}^{2}\, \mathrm d x $$ | 1 |
| 5979 | $$ \displaystyle\int^{1}_{0} \dfrac{\sin\left(x\right)}{2x}\, \mathrm d x $$ | 1 |
| 5980 | $$ \displaystyle\int^{6}_{-6} \dfrac{{x}^{2}}{4{\cdot}\sin\left({x}^{3}\right)}\, \mathrm d x $$ | 1 |
| 5981 | $$ $$ | 1 |
| 5982 | $$ \displaystyle\int {x}^{2}-2\, \mathrm d x $$ | 1 |
| 5983 | $$ \displaystyle\int^{\pi/2}_{0} \dfrac{x{\cdot}\sin\left(x\right){\cdot}\cos\left(x\right)}{{\left(\cos\left(x\right)\right)}^{4}+{\left(\sin\left(x\right)\right)}^{4}}\, \mathrm d x $$ | 1 |
| 5984 | $$ \displaystyle\int^{\pi}_{0} \dfrac{x{\cdot}\sin\left(x\right){\cdot}\cos\left(x\right)}{{\left(\cos\left(x\right)\right)}^{4}+{\left(\sin\left(x\right)\right)}^{4}}\, \mathrm d x $$ | 1 |
| 5985 | $$ $$ | 1 |
| 5986 | $$ \displaystyle\int {t}^{3}\, \mathrm d x $$ | 1 |
| 5987 | $$ \displaystyle\int \dfrac{2x+3}{{x}^{2}+9}\, \mathrm d x $$ | 1 |
| 5988 | $$ \displaystyle\int^{2}_{1} \cos\left(2x\right){\cdot}{\mathrm{e}}^{\sin\left(2x\right)}\, \mathrm d x $$ | 1 |
| 5989 | $$ \displaystyle\int \dfrac{{\left(\cos\left(x\right)\right)}^{2}}{{\left(\sin\left(x\right)\right)}^{4}}\, \mathrm d x $$ | 1 |
| 5990 | $$ \displaystyle\int \dfrac{3}{4}{\cdot}\left(1-{x}^{2}\right)\, \mathrm d x $$ | 1 |
| 5991 | $$ \displaystyle\int \sqrt{16}-{x}^{2}\, \mathrm d x $$ | 1 |
| 5992 | $$ \displaystyle\int {x}^{3}{\cdot}{\mathrm{e}}^{2x}{\cdot}\left(1+{\mathrm{e}}^{x}\right)\, \mathrm d x $$ | 1 |
| 5993 | $$ \displaystyle\int^{1}_{0} 3x{\cdot}{\mathrm{e}}^{x}\, \mathrm d x $$ | 1 |
| 5994 | $$ \displaystyle\int^{\infty}_{3} \dfrac{5}{{x}^{2}+3x-4}\, \mathrm d x $$ | 1 |
| 5995 | $$ \displaystyle\int \dfrac{2{x}^{3}}{{x}^{2}}+\dfrac{3}{{x}^{2}}\, \mathrm d x $$ | 1 |
| 5996 | $$ $$ | 1 |
| 5997 | $$ $$ | 1 |
| 5998 | $$ $$ | 1 |
| 5999 | $$ $$ | 1 |
| 6000 | $$ $$ | 1 |