Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 551 | $$ $$ | 3 |
| 552 | $$ $$ | 3 |
| 553 | $$ $$ | 3 |
| 554 | $$ $$ | 3 |
| 555 | $$ $$ | 3 |
| 556 | $$ $$ | 3 |
| 557 | $$ $$ | 3 |
| 558 | $$ $$ | 3 |
| 559 | $$ \displaystyle\int \dfrac{{x}^{2}}{1+{x}^{3}}\, \mathrm d x $$ | 3 |
| 560 | $$ $$ | 3 |
| 561 | $$ $$ | 3 |
| 562 | $$ $$ | 3 |
| 563 | $$ $$ | 3 |
| 564 | $$ $$ | 3 |
| 565 | $$ $$ | 3 |
| 566 | $$ $$ | 3 |
| 567 | $$ $$ | 3 |
| 568 | $$ $$ | 3 |
| 569 | $$ $$ | 3 |
| 570 | $$ $$ | 3 |
| 571 | $$ $$ | 3 |
| 572 | $$ $$ | 3 |
| 573 | $$ \displaystyle\int {\left(2{x}^{2}-1\right)}^{5}\, \mathrm d x $$ | 3 |
| 574 | $$ \displaystyle\int \ln\left(2\right){\cdot}x\, \mathrm d x $$ | 3 |
| 575 | $$ $$ | 3 |
| 576 | $$ $$ | 3 |
| 577 | $$ $$ | 3 |
| 578 | $$ $$ | 3 |
| 579 | $$ $$ | 3 |
| 580 | $$ $$ | 3 |
| 581 | $$ $$ | 3 |
| 582 | $$ \displaystyle\int \dfrac{4x}{\left(x-1\right){\cdot}\left({x}^{2}+x+2\right)}\, \mathrm d x $$ | 3 |
| 583 | $$ \displaystyle\int x{\cdot}{\left(\sin\left(x\right)\right)}^{-1}\, \mathrm d x $$ | 3 |
| 584 | $$ $$ | 3 |
| 585 | $$ $$ | 3 |
| 586 | $$ $$ | 3 |
| 587 | $$ \displaystyle\int^{\infty}_{-1} {x}^{2}{\cdot}{\mathrm{e}}^{-{x}^{3}}\, \mathrm d x $$ | 3 |
| 588 | $$ \displaystyle\int \dfrac{\cos\left(x\right)}{\sin\left(x\right){\cdot}\left(2+\sin\left(x\right)\right)}\, \mathrm d x $$ | 3 |
| 589 | $$ \displaystyle\int 3{x}^{2}+x+1\, \mathrm d x $$ | 3 |
| 590 | $$ \displaystyle\int {\left(1-{x}^{2}\right)}^{c}\, \mathrm d x $$ | 3 |
| 591 | $$ $$ | 3 |
| 592 | $$ \displaystyle\int x{\cdot}{\left(1-x\right)}^{6}\, \mathrm d x $$ | 3 |
| 593 | $$ $$ | 3 |
| 594 | $$ \displaystyle\int \dfrac{x-1}{{x}^{2}}\, \mathrm d x $$ | 3 |
| 595 | $$ \int {10}{x}^{{3}}-{5}\frac{{x}}{\sqrt{{{x}^{{4}}-{x}^{{2}}+{6}}}} \, d\,x $$ | 3 |
| 596 | $$ \displaystyle\int {x}^{x}\, \mathrm d x $$ | 3 |
| 597 | $$ \displaystyle\int \sqrt{\tan\left(x\right)}\, \mathrm d x $$ | 3 |
| 598 | $$ \displaystyle\int^{\pi}_{0} {x}^{3}{\cdot}\cos\left(2x\right)\, \mathrm d x $$ | 3 |
| 599 | $$ $$ | 3 |
| 600 | $$ \displaystyle\int^{3.14}_{0} \sqrt{1+{x}^{2}}\, \mathrm d x $$ | 3 |