Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 5851 | $$ $$ | 1 |
| 5852 | $$ \displaystyle\int \dfrac{{x}^{2}+1}{{x}^{4}+1}\, \mathrm d x $$ | 1 |
| 5853 | $$ \displaystyle\int \dfrac{1}{\ln\left(x\right)+x}\, \mathrm d x $$ | 1 |
| 5854 | $$ \displaystyle\int \dfrac{3}{x}-\dfrac{x}{3}\, \mathrm d x $$ | 1 |
| 5855 | $$ $$ | 1 |
| 5856 | $$ \displaystyle\int \dfrac{x}{1+{x}^{2}}\, \mathrm d x $$ | 1 |
| 5857 | $$ \displaystyle\int^{0.211325}_{--.788675} \dfrac{10}{1+{\left(2x+1\right)}^{2}}\, \mathrm d x $$ | 1 |
| 5858 | $$ \displaystyle\int \dfrac{1+{x}^{2}}{{x}^{5}+1}\, \mathrm d x $$ | 1 |
| 5859 | $$ \displaystyle\int \dfrac{1+{x}^{2}}{{x}^{6}+1}\, \mathrm d x $$ | 1 |
| 5860 | $$ \displaystyle\int \dfrac{1+x}{{x}^{6}+1}\, \mathrm d x $$ | 1 |
| 5861 | $$ \displaystyle\int \dfrac{1}{{x}^{6}+1}\, \mathrm d x $$ | 1 |
| 5862 | $$ \displaystyle\int \dfrac{2}{\left(2-x\right){\cdot}{\left(x+2\right)}^{2}}\, \mathrm d x $$ | 1 |
| 5863 | $$ $$ | 1 |
| 5864 | $$ $$ | 1 |
| 5865 | $$ $$ | 1 |
| 5866 | $$ $$ | 1 |
| 5867 | $$ $$ | 1 |
| 5868 | $$ $$ | 1 |
| 5869 | $$ $$ | 1 |
| 5870 | $$ $$ | 1 |
| 5871 | $$ $$ | 1 |
| 5872 | $$ $$ | 1 |
| 5873 | $$ $$ | 1 |
| 5874 | $$ $$ | 1 |
| 5875 | $$ $$ | 1 |
| 5876 | $$ $$ | 1 |
| 5877 | $$ $$ | 1 |
| 5878 | $$ $$ | 1 |
| 5879 | $$ \displaystyle\int^{1}_{0} {x}^{2}-2x+1\, \mathrm d x $$ | 1 |
| 5880 | $$ $$ | 1 |
| 5881 | $$ $$ | 1 |
| 5882 | $$ $$ | 1 |
| 5883 | $$ $$ | 1 |
| 5884 | $$ \displaystyle\int \dfrac{1}{\sqrt{0.06{x}^{2}+8x+39.46}}\, \mathrm d x $$ | 1 |
| 5885 | $$ \displaystyle\int {x}^{2}-1\, \mathrm d x $$ | 1 |
| 5886 | $$ \displaystyle\int \ln\left(x+4\right)\, \mathrm d x $$ | 1 |
| 5887 | $$ \displaystyle\int \dfrac{1}{2}\, \mathrm d x $$ | 1 |
| 5888 | $$ \displaystyle\int \dfrac{1}{2{\cdot}\sqrt{x}}\, \mathrm d x $$ | 1 |
| 5889 | $$ \displaystyle\int 1-{\mathrm{e}}^{-x}\, \mathrm d x $$ | 1 |
| 5890 | $$ \displaystyle\int \dfrac{1}{{\mathrm{e}}^{x}}\, \mathrm d x $$ | 1 |
| 5891 | $$ $$ | 1 |
| 5892 | $$ $$ | 1 |
| 5893 | $$ $$ | 1 |
| 5894 | $$ $$ | 1 |
| 5895 | $$ $$ | 1 |
| 5896 | $$ $$ | 1 |
| 5897 | $$ $$ | 1 |
| 5898 | $$ \displaystyle\int {\left(1+{x}^{2}\right)}^{-3}\, \mathrm d x $$ | 1 |
| 5899 | $$ \displaystyle\int 104.7247576{\cdot}\left(1-{\mathrm{e}}^{\frac{-t}{9}}\right)\, \mathrm d x $$ | 1 |
| 5900 | $$ \displaystyle\int \sin\left(2\right)\, \mathrm d x $$ | 1 |