Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 5751 | $$ $$ | 1 |
| 5752 | $$ $$ | 1 |
| 5753 | $$ $$ | 1 |
| 5754 | $$ $$ | 1 |
| 5755 | $$ $$ | 1 |
| 5756 | $$ $$ | 1 |
| 5757 | $$ $$ | 1 |
| 5758 | $$ $$ | 1 |
| 5759 | $$ $$ | 1 |
| 5760 | $$ $$ | 1 |
| 5761 | $$ $$ | 1 |
| 5762 | $$ $$ | 1 |
| 5763 | $$ $$ | 1 |
| 5764 | $$ $$ | 1 |
| 5765 | $$ $$ | 1 |
| 5766 | $$ \displaystyle\int \dfrac{\sqrt{x+3}}{\sqrt{x-1}}\, \mathrm d x $$ | 1 |
| 5767 | $$ $$ | 1 |
| 5768 | $$ $$ | 1 |
| 5769 | $$ $$ | 1 |
| 5770 | $$ $$ | 1 |
| 5771 | $$ $$ | 1 |
| 5772 | $$ $$ | 1 |
| 5773 | $$ $$ | 1 |
| 5774 | $$ \displaystyle\int {x}^{2}{\cdot}{\mathrm{e}}^{x}\, \mathrm d x $$ | 1 |
| 5775 | $$ \displaystyle\int \sin\left(x\right){\cdot}{\mathrm{e}}^{x}\, \mathrm d x $$ | 1 |
| 5776 | $$ \displaystyle\int^{\infty}_{1} x{\cdot}{\mathrm{e}}^{-{x}^{2}}\, \mathrm d x $$ | 1 |
| 5777 | $$ \displaystyle\int \sin\left(2x\right)\, \mathrm d x $$ | 1 |
| 5778 | $$ \displaystyle\int^{2}_{1} {x}^{6}+2{x}^{3}+1\, \mathrm d x $$ | 1 |
| 5779 | $$ \displaystyle\int^{5}_{1} 2{x}^{4}{\cdot}{\left({x}^{2}-5\right)}^{50}\, \mathrm d x $$ | 1 |
| 5780 | $$ \displaystyle\int^{3}_{----1} {x}^{3}+1\, \mathrm d x $$ | 1 |
| 5781 | $$ \displaystyle\int^{2}_{0} \dfrac{1}{{\left(\ln\left(x\right)\right)}^{-7}}\, \mathrm d x $$ | 1 |
| 5782 | $$ \displaystyle\int \dfrac{1}{{x}^{2}}{\cdot}\sin\left(\dfrac{{\pi}}{x}\right)\, \mathrm d x $$ | 1 |
| 5783 | $$ \int {2}{x}+{4} \, d\,x $$ | 1 |
| 5784 | $$ \int^{6}_{4} {5}{x}+{4} \, d\,x $$ | 1 |
| 5785 | $$ $$ | 1 |
| 5786 | $$ $$ | 1 |
| 5787 | $$ $$ | 1 |
| 5788 | $$ $$ | 1 |
| 5789 | $$ $$ | 1 |
| 5790 | $$ $$ | 1 |
| 5791 | $$ $$ | 1 |
| 5792 | $$ $$ | 1 |
| 5793 | $$ $$ | 1 |
| 5794 | $$ $$ | 1 |
| 5795 | $$ $$ | 1 |
| 5796 | $$ $$ | 1 |
| 5797 | $$ $$ | 1 |
| 5798 | $$ \displaystyle\int x{\cdot}\sqrt{9+x}\, \mathrm d x $$ | 1 |
| 5799 | $$ \displaystyle\int^{\pi}_{--------\pi} \arcsin\left(\cos\left(x\right)\right){\cdot}\cos\left(nx\right)\, \mathrm d x $$ | 1 |
| 5800 | $$ \displaystyle\int \arcsin\left(\cos\left(x\right)\right)\, \mathrm d x $$ | 1 |