The GCD of given numbers is 64.
Step 1 : Place the numbers inside division bar:.
| 1344 | 1856 | 2752 |
Step 2 : Divide numbers by 2.
| 2 | 1344 | 1856 | 2752 |
| 672 | 928 | 1376 |
Step 3 : Divide numbers by 2.
| 2 | 1344 | 1856 | 2752 |
| 2 | 672 | 928 | 1376 |
| 336 | 464 | 688 |
Step 4 : Divide numbers by 2.
| 2 | 1344 | 1856 | 2752 |
| 2 | 672 | 928 | 1376 |
| 2 | 336 | 464 | 688 |
| 168 | 232 | 344 |
Step 5 : Divide numbers by 2.
| 2 | 1344 | 1856 | 2752 |
| 2 | 672 | 928 | 1376 |
| 2 | 336 | 464 | 688 |
| 2 | 168 | 232 | 344 |
| 84 | 116 | 172 |
Step 6 : Divide numbers by 2.
| 2 | 1344 | 1856 | 2752 |
| 2 | 672 | 928 | 1376 |
| 2 | 336 | 464 | 688 |
| 2 | 168 | 232 | 344 |
| 2 | 84 | 116 | 172 |
| 42 | 58 | 86 |
Step 7 : Divide numbers by 2.
| 2 | 1344 | 1856 | 2752 |
| 2 | 672 | 928 | 1376 |
| 2 | 336 | 464 | 688 |
| 2 | 168 | 232 | 344 |
| 2 | 84 | 116 | 172 |
| 2 | 42 | 58 | 86 |
| 21 | 29 | 43 |
Step 8 : Number 21, 29 and 43, cannot be divided any more. The GCD is:
$$ GCD = 2\cdot2\cdot2\cdot2\cdot2\cdot2 = 64 $$This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.