The GCD of given numbers is 1.
Step 1 : Find prime factorization of each number.
$$\begin{aligned}81 =& 3\cdot3\cdot3\cdot3\\[8pt]729 =& 3\cdot3\cdot3\cdot3\cdot3\cdot3\\[8pt]108 =& 2\cdot2\cdot3\cdot3\cdot3\\[8pt]153 =& 3\cdot3\cdot17\\[8pt]193 =& 193\\[8pt]\end{aligned}$$(view steps on how to factor 81, 729, 108, 153 and 193. )
Step 2 : Put a box around factors that are common for all numbers:
$$\begin{aligned}81 =& 3\cdot3\cdot3\cdot3\\[8pt]729 =& 3\cdot3\cdot3\cdot3\cdot3\cdot3\\[8pt]108 =& 2\cdot2\cdot3\cdot3\cdot3\\[8pt]153 =& 3\cdot3\cdot17\\[8pt]193 =& 193\\[8pt]\end{aligned}$$Note that in this example numbers do not have any common factors.
Step 3 : Multiply the boxed numbers together:
Since there is no boxed numbers we conclude that $~\color{blue}{ \text{GCD = 1} } $.