The GCD of given numbers is 1.
Step 1 : Find prime factorization of each number.
$$\begin{aligned}28853 =& 11\cdot43\cdot61\\[8pt]684 =& 2\cdot2\cdot3\cdot3\cdot19\\[8pt]28892 =& 2\cdot2\cdot31\cdot233\\[8pt]402 =& 2\cdot3\cdot67\\[8pt]32063 =& 32063\\[8pt]656 =& 2\cdot2\cdot2\cdot2\cdot41\\[8pt]\end{aligned}$$(view steps on how to factor 28853, 684, 28892, 402, 32063 and 656. )
Step 2 : Put a box around factors that are common for all numbers:
$$\begin{aligned}28853 =& 11\cdot43\cdot61\\[8pt]684 =& 2\cdot2\cdot3\cdot3\cdot19\\[8pt]28892 =& 2\cdot2\cdot31\cdot233\\[8pt]402 =& 2\cdot3\cdot67\\[8pt]32063 =& 32063\\[8pt]656 =& 2\cdot2\cdot2\cdot2\cdot41\\[8pt]\end{aligned}$$Note that in this example numbers do not have any common factors.
Step 3 : Multiply the boxed numbers together:
Since there is no boxed numbers we conclude that $~\color{blue}{ \text{GCD = 1} } $.